Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao zbMATH Openarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
zbMATH Open
Article
Data sources: zbMATH Open
Intelligent Data Analysis
Article . 1999 . Peer-reviewed
Data sources: Crossref
Intelligent Data Analysis
Article . 1999
Data sources: mEDRA
Intelligent Data Analysis
Article . 1999 . Peer-reviewed
Data sources: Crossref
DBLP
Article
Data sources: DBLP
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Linear tree

Linear tree.
Authors: João Gama 0001; Pavel Brazdil;
Abstract

In this paper we present system Ltree for propositional supervised learning. Ltree is able to define decision surfaces both orthogonal and oblique to the axes defined by the attributes of the input space. This is done combining a decision tree with a linear discriminant by means of constructive induction. At each decision node Ltree defines a new instance space by insertion of new attributes that are projections of the examples that fall at this node over the hyper-planes given by a linear discriminant function. This new instance space is propagated down through the tree. Tests based on those new attributes are oblique with respect to the original input space. Ltree is a probabilistic tree in the sense that it outputs a class probability distribution for each query example. The class probability distribution is computed at learning time, taking into account the different class distributions on the path from the root to the actual node. We have carried out experiments on twenty one benchmark datasets and compared our system with other well known decision tree systems (orthogonal and oblique) like C4.5, OC1, LMDT, and CART. On these datasets we have observed that our system has advantages in what concerns accuracy and learning times at statistically significant confidence levels.

Related Organizations
Keywords

Graph theory (including graph drawing) in computer science, Learning and adaptive systems in artificial intelligence, propositional supervised learning

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    39
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
39
Top 10%
Top 1%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!