
doi: 10.3150/17-bej1017
handle: 20.500.11824/942
The Mallows and Generalized Mallows Models are two of the most popular probability models for distribu- tions on permutations. In this paper, we consider both models under the Hamming distance. This models can be seen as models for matchings instead of models for rankings. These models cannot be factorized, which contrasts with the popular MM and GMM under Kendall’s-τ and Cayley distances. In order to overcome the computational issues that the models involve, we introduce a novel method for computing the partition function. By adapting this method we can compute the expectation, joint and conditional probabilities. All these methods are the basis for three sampling algorithms, which we propose and analyze. Moreover, we also propose a learning algorithm. All the algorithms are analyzed both theoretically and empirically, using synthetic and real data from the context of e-learning and Massive Open Online Courses (MOOC).
sampling, Generalized Mallows Model, learning, hamming, matching, Mallows Model
sampling, Generalized Mallows Model, learning, hamming, matching, Mallows Model
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 10 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
