Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ HTM Journal of Heat ...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
HTM Journal of Heat Treatment and Materials
Article . 2012 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

The influence of quenchant composition on the cooling rate

Authors: Božidar Matijević; Ljiljana Pedišić; Leon Vlašić;

The influence of quenchant composition on the cooling rate

Abstract

Abstract Adequate selection of quenching media decreases the risk of tensile stresses, and also of cracking and workpiece distortion. High-performance quenching oils must have very high oxidation and thermal resistance and low sludge formation, must be non-staining and have a high flash point and acceptable heat-transfer characteristics. The quenching media contain a base oil and different types of additives according to application requirements. Mineral oils, synthetic and natural oils, used separately or in combination, may be used as base oils. Mineral base oils are widely used because of their advantages with respect to stability in comparison to natural oils, or lower prices in comparison to synthetic oils. There are numerous compounds available for use but, besides their functional properties, the environmental and safety requirements have to be considered in the selection of components. Based on that, barium additives must be replaced with less harmful compounds. Petroleum derivatives should be replaced with renewable base stocks that are biodegradable, which is a general trend in lubricant development. By changing the composition of quenching oils, base oils and additives, heat transfer characteristics are also changed. In this study, the results of investigation into physical and chemical properties and also cooling characteristics of new quenching oils with different compositions are presented. Cooling curves for different compositions have been evaluated according to the ISO 9950 Standard.

Keywords

metal heat treatment; hardening; quenchants; watermiscible quenchant fluids

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
1
Average
Average
Average
bronze