<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
We consider quantum circuits composed of Clifford and $T$ gates. In this context the $T$ gate has a special status since it confers universal computation when added to the (classically simulable) Clifford gates. However it can be very expensive to implement fault-tolerantly. We therefore view this gate as a resource which should be used only when necessary. Given an $n$-qubit unitary $U$ we are interested in computing a circuit that implements it using the minimum possible number of $T$ gates (called the $T$-count of $U$). A related task is to decide if the $T$-count of $U$ is less than or equal to $m$; we consider this problem as a function of $N=2^n$ and $m$. We provide a classical algorithm which solves it using time and space both upper bounded as $\mathcal{O}(N^m \text{poly}(m,N))$. We implemented our algorithm and used it to show that any Clifford+T circuit for the Toffoli or the Fredkin gate requires at least 7 $T$ gates. This implies that the known 7 $T$ gate circuits for these gates are $T$-optimal. We also provide a simple expression for the $T$-count of single-qubit unitaries.
Quantum Physics, FOS: Physical sciences, Quantum Physics (quant-ph)
Quantum Physics, FOS: Physical sciences, Quantum Physics (quant-ph)
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 55 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |