Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Selection for sow longevity1,2

Authors: Serenius, Timo; Stalder, K.;

Selection for sow longevity1,2

Abstract

Sow longevity plays an important role in economically efficient piglet production because sow longevity is related to the number of piglets produced during its productive lifetime; however, selection for sow longevity is not commonly practiced in any pig breeding program. There is relatively little scientific literature concerning the genetic parameters (genetic variation and genetic correlations) or methods available for breeding value estimation for effective selection for sow longevity. This paper summarizes the current knowledge about the genetics of sow longevity and discusses the available breeding value estimation methods for sow longevity traits. The studies in the literature clearly indicate that sow longevity is a complex trait, and even the definition of sow longevity is variable depending on the researcher and research objective. In general, the measures and analyses of sow longevity can be divided into 1) continuous traits (e.g., productive lifetime) analyzed with proportional hazard models; and 2) more simple binary traits such as stayability until some predetermined fixed parity. Most studies have concluded that sufficient genetic variation exists for effective selection on sow longevity, and heritability estimates have ranged between 0.02 and 0.25. Moreover, sow longevity has shown to be genetically associated with prolificacy and leg conformation traits. Variable results from previous research have led to a lack of consensus among swine breeders concerning the valid methodology of estimating breeding values for longevity traits. One can not deny the superiority of survival analysis in the modeling approach of longevity data; however, multiple-trait analyses are not possible using currently available survival analysis software. Less sophisticated approaches have the advantage of evaluating multiple traits simultaneously, and thus, can use the genetic associations between sow longevity and other traits. Additional research is needed to identify the most efficient selection methods for sow longevity. Future research needs to concentrate on multiple trait analysis of sow longevity traits. Moreover, because longevity is a fitness trait, the nonadditive genetic effects (e.g., dominance) may play important role in the inheritance of sow longevity. Currently, not a single estimate for dominance variance of sow longevity could be identified from the scientific literature.

Country
Finland
Related Organizations
Keywords

Meat, Swine, elinaika-analyysi, Reproduction, Longevity, Ko, Genetic Variation, swine, Extremities, Breeding, survival analysis, sika, Animals, Female, Animal Husbandry, Selection, Genetic

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    57
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
57
Top 10%
Top 10%
Top 10%
Upload OA version
Are you the author? Do you have the OA version of this publication?