
doi: 10.2307/2687752
In this paper, we shall discuss some recent contributions to the project [15, 14, 2, 18, 22, 23] of explaining why no satisfactory system of complete invariants has yet been found for the torsion-free abelian groups of finite rank n ≥ 2. Recall that, up to isomorphism, the torsion-free abelian groups of rank n are exactly the additive subgroups of the n-dimensional vector space ℚn which contain n linearly independent elements. Thus the collection of torsion-free abelian groups of rank at most n can be naturally identified with the set S (ℚn) of all nontrivial additive subgroups of ℚn. In 1937, Baer [4] solved the classification problem for the class S(ℚ)of rank 1 groups as follows.Let ℙ be the set of primes. If G is a torsion-free abelian group and 0 ≠ x ϵ G, then the p-height of x is defined to behx(p) = sup{n ϵ ℕ ∣ There exists y ϵ G such that pny = x} ϵ ℕ ∪{∞}; and the characteristic χ (x) of x is defined to be the function
Torsion-free groups, finite rank, Borel equivalences, descriptive set theory, rigid groups, finite rank torsion-free Abelian groups, complete sets of invariants, Applications of logic to group theory, complexity, Descriptive set theory
Torsion-free groups, finite rank, Borel equivalences, descriptive set theory, rigid groups, finite rank torsion-free Abelian groups, complete sets of invariants, Applications of logic to group theory, complexity, Descriptive set theory
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 8 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
