Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao zbMATH Openarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
zbMATH Open
Article
Data sources: zbMATH Open
Biometrics
Article . 1994 . Peer-reviewed
Data sources: Crossref
Biometrics
Article . 1994
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Performance of Generalized Estimating Equations in Practical Situations

Performance of generalized estimating equations in practical situations
Authors: Stuart R. Lipsitz; Endel J. Orav; Garrett M. Fitzmaurice; Nan M. Laird;

Performance of Generalized Estimating Equations in Practical Situations

Abstract

Moment methods for analyzing repeated binary responses have been proposed by Liang and Zeger (1986, Biometrika 73, 13-22), and extended by Prentice (1988, Biometrics 44, 1033-1048). In their generalized estimating equations (GEE), both Liang and Zeger (1986) and Prentice (1988) estimate the parameters associated with the expected value of an individual's vector of binary responses as well as the correlations between pairs of binary responses. In this paper, we discuss one-step estimators, i.e., estimators obtained from one step of the generalized estimating equations, and compare their performance to that of the fully iterated estimators in small samples. In simulations, we find the performance of the one-step estimator to be qualitatively similar to that of the fully iterated estimator. When the sample size is small and the association between binary responses is high, we recommend using the one-step estimator to circumvent convergence problems associated with the fully iterated GEE algorithm. Furthermore, we find the GEE methods to be more efficient than ordinary logistic regression with variance correction for estimating the effect of a time-varying covariate.

Related Organizations
Keywords

Generalized linear models (logistic models), Analysis of Variance, Biometry, Models, Statistical, Estimation in multivariate analysis, Probabilistic methods, stochastic differential equations, Air Pollution, Data Interpretation, Statistical, Humans, Computer Simulation, Female, Tobacco Smoke Pollution, Longitudinal Studies, Child, Algorithms, Respiratory Sounds

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    178
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
178
Top 1%
Top 1%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!