
Nonlinear perturbations of linear Volterra integral equations are studied in an abstract setting which contains and generalizes some earlier results on the same problem. The perturbed problem is first written as a variation of constants equation on a Fréchet space. It is then shown that standard fixed point theorems may be applied if the linear equation is admissible w.r.t. a Banach subspace of the Fréchet space. This theory is applied to an example where L 2 {L^2} -stability is proved.
integral equations, integral transforms
integral equations, integral transforms
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 18 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
