
The notion of coherency with submanifolds for a Morse function on a manifold is introduced and discussed in a general way. A Morse inequality for a given periodic transformation which compares the invariants called qth Euler numbers on fixed point set and the invariants called qth Lefschetz numbers of the transformations is thus obtained. This gives a fixed point theorem in terms of qth Lefschetz number for arbitrary q.
Fixed points and coincidences in algebraic topology, Topological transformation groups, Differentiable manifolds, foundations
Fixed points and coincidences in algebraic topology, Topological transformation groups, Differentiable manifolds, foundations
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 1 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
