
AbstractVopěnka proved long ago that every set of ordinals is set-generic over HOD, Gödel's inner model of hereditarily ordinal-definable sets. Here we show that the entire universe V is class-generic over (HOD,S), and indeed over the even smaller inner model =(L[S],S), where S is the Stability predicate. We refer to the inner model as the Stable Core of V. The predicate S has a simple definition which is more absolute than any definition of HOD; in particular, it is possible to add reals which are not set-generic but preserve the Stable Core (this is not possible for HOD by Vopěnka's theorem).
101013 Mathematical logic, 101013 Mathematische Logik
101013 Mathematical logic, 101013 Mathematische Logik
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 3 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
