Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Analysis & PDEarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Analysis & PDE
Article
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
INRIA2
Article . 2017
Data sources: INRIA2
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Project Euclid
Other literature type . 2017
Data sources: Project Euclid
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
zbMATH Open
Article . 2017
Data sources: zbMATH Open
Analysis & PDE
Article . 2017 . Peer-reviewed
Data sources: Crossref
https://dx.doi.org/10.48550/ar...
Article . 2016
License: arXiv Non-Exclusive Distribution
Data sources: Datacite
versions View all 8 versions
addClaim

Pliability, or the Whitney extension theorem for curves in Carnot groups

Authors: Juillet, Nicolas; Sigalotti, Mario;

Pliability, or the Whitney extension theorem for curves in Carnot groups

Abstract

The Whitney extension theorem is a classical result in analysis giving a necessary and sufficient condition for a function defined on a closed set to be extendable to the whole space with a given class of regularity. It has been adapted to several settings, among which the one of Carnot groups. However, the target space has generally been assumed to be equal to R^d for some d $\ge$ 1. We focus here on the extendability problem for general ordered pairs (G\_1,G\_2) (with G\_2 non-Abelian). We analyze in particular the case G\_1 = R and characterize the groups G\_2 for which the Whitney extension property holds, in terms of a newly introduced notion that we call pliability. Pliability happens to be related to rigidity as defined by Bryant an Hsu. We exploit this relation in order to provide examples of non-pliable Carnot groups, that is, Carnot groups so that the Whitney extension property does not hold. We use geometric control theory results on the accessibility of control affine systems in order to test the pliability of a Carnot group. In particular, we recover some recent results by Le Donne, Speight and Zimmermann about Lusin approximation in Carnot groups of step 2 and Whitney extension in Heisenberg groups. We extend such results to all pliable Carnot groups, and we show that the latter may be of arbitrarily large step.

Country
France
Keywords

Carnot group, Group Theory (math.GR), 530, [MATH.MATH-GR]Mathematics [math]/Group Theory [math.GR], 510, 53C17, Differentiable maps on manifolds, Mathematics - Metric Geometry, rigid curve, FOS: Mathematics, 22E25, [MATH.MATH-MG] Mathematics [math]/Metric Geometry [math.MG], Whitney extension theorem, [MATH.MATH-MG]Mathematics [math]/Metric Geometry [math.MG], Mathematics - Optimization and Control, Interpolation in approximation theory, [MATH.MATH-GR] Mathematics [math]/Group Theory [math.GR], 41A05, horizontal curve, Nilpotent and solvable Lie groups, 54C20, 58C25, [MATH.MATH-OC] Mathematics [math]/Optimization and Control [math.OC], Metric Geometry (math.MG), Sub-Riemannian geometry, Optimization and Control (math.OC), [MATH.MATH-OC]Mathematics [math]/Optimization and Control [math.OC], Mathematics - Group Theory, Extension of maps

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    8
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
8
Top 10%
Average
Average
Green
bronze