
It is well known that conventional Wald-type inference in the context of quantile regression is complicated by the need to construct estimates of the conditional densities of the response variables at the quantile of interest. This note explores the possibility of circumventing the need to construct conditional density estimates in this context with scale statistics that are explicitly inconsistent for the underlying conditional densities. This method of studentization leads conventional test statistics to have limiting distributions that are nonstandard but have the convenient feature of depending explicitly on the user’s choice of smoothing parameter. These limiting distributions depend on the distribution of the conditioning variables but can be straightforwardly approximated by resampling.
Nonparametric estimation
Nonparametric estimation
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 8 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
