
The authors give oscillation criteria for the nonlinear neutral difference equations of the third order, \[ \Delta \big ( a_n\,(\Delta ^2(x_n\pm b_nx_{n-\delta }))\big )^{\alpha }+q_n\,x_{n+1-\tau }^{\alpha }=0. \] These criteria present sufficient conditions for the oscillation of every (nontrivial) solution, or the limit of the solution as \(n\to \infty \) being zero. The proofs involve a Riccati-type technique. On the other hand, the existence of solutions of the above equation is not discussed at all, while the presented criteria have the existence of a solution as an assumption.
Oscillation theory for difference equations, nonoscillation, oscillation, Additive difference equations, third-order neutral difference equation
Oscillation theory for difference equations, nonoscillation, oscillation, Additive difference equations, third-order neutral difference equation
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 4 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
