Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Ecologyarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Ecology
Article . 2016 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
Ecology
Article . 2016
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Weighted species richness outperforms species richness as predictor of biotic resistance

Authors: Anna, Henriksson; Jun, Yu; David A, Wardle; Johan, Trygg; Göran, Englund;

Weighted species richness outperforms species richness as predictor of biotic resistance

Abstract

AbstractThe species richness hypothesis, which predicts that species‐rich communities should be better at resisting invasions than species‐poor communities, has been empirically tested many times and is often poorly supported. In this study, we contrast the species richness hypothesis with four alternative hypotheses with the aim of finding better descriptors of invasion resistance. These alternative hypotheses state that resistance to invasions is determined by abiotic conditions, community saturation (i.e., the number of resident species relative to the maximum number of species that can be supported), presence/absence of key species, or weighted species richness. Weighted species richness is a weighted sum of the number of species, where each species’ weight describes its contribution to resistance. We tested these hypotheses using data on the success of 571 introductions of four freshwater fish species into lakes throughout Sweden, i.e., Arctic char (Salvelinus alpinus), tench (Tinca tinca), zander (Sander lucioperca), and whitefish (Coregonus lavaretus). We found that weighted species richness best predicted invasion success. The weights describing the contribution of each resident species to community resistance varied considerably in both strength and sign. Positive resistance weights, which indicate that species repel invaders, were as common as negative resistance weights, which indicate facilitative interactions. This result can be contrasted with the implicit assumption of the original species richness hypothesis, that all resident species have negative effects on invader success. We argue that this assumption is unlikely to be true in natural communities, and thus that we expect that weighted species richness is a better predictor of invader success than the actual number of resident species.

Related Organizations
Keywords

Lakes, Fishes, Animals, Biodiversity, Introduced Species, Models, Biological

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    18
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
18
Top 10%
Average
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!