Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Организация и обработка результатов A/B тестирования в мобильном приложении

выпускная квалификационная работа бакалавра

Организация и обработка результатов A/B тестирования в мобильном приложении

Abstract

A/B-тестирование — метод исследования, суть которого заключается в том, чтобы выяснить, какие из изменений элементов ПО улучшают целевой показатель теста. Метод помогает принимать решения на основе реальных данных, отражающих предпочтения пользователей ПО. Работа раскрывает методологические аспекты проведения A/B тестов, всех ключевых этапов – от планирования и проведения эксперимента до анализа результатов теста. Цель работы – разработка методологии полного цикла проведения А/B экспериментов в мобильном приложении. Подцелью работы является рассмотрение А/B тестов с исторической точки зрения развития рандомизированных экспериментов и статистических методов обработки данных до современных проблем и подходов к А/B экспериментам. В работе также были рассмотрены современные платформы для проведения экспериментов в мобильных приложениях. В практической части был спланирован и проанализирован A/B тест в мобильном приложении.

A/B testing is a research method, the essence of which is to find out which of the changes in the software elements improve the test target. The method helps to make decisions based on real data reflecting the preferences of software users. The work reveals the methodological aspects of conducting A/B tests, all key stages – from planning and conducting an experiment to analyzing test results. The purpose of the work is to develop a methodology for a full cycle of A/B experiments. The sub-goal of the work is to consider A/B tests from the historical point of view of the development of randomized experiments and statistical methods of data processing to modern problems and approaches to A/B experiments with a narrow specialization in the field of conducting randomized experiments in mobile applications. The article also considered modern platforms for conducting experiments in mobile applications. In the practical part, an A/B test was planned and analyzed in a mobile application.

Keywords

дизайн эксперимента, проверка гипотез, multiple testing, а/б тестирование, мобильные приложения, множественное тестирование, принятие решений, randomized experiments, mobile applications, decision making, statistical criteria, рандомизированные эксперименты, a/b testing, статистические критерии, hypothesis testing, experiment design

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!