Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

ÐÐ°Ñ Ð¾Ð¶Ð´ÐµÐ½Ð¸Ðµ Ð¾Ð¿Ñ‚Ð¸Ð¼Ð°Ð»ÑŒÐ½Ñ‹Ñ Ð³Ð¸Ð¿ÐµÑ€Ð¿Ð°Ñ€Ð°Ð¼ÐµÑ‚Ñ€Ð¾Ð² для моделей машинного обучения Ð´Ð¾Ð±Ñ‹Ð²Ð°ÑŽÑ‰Ð¸Ñ ÑÐºÐ²Ð°Ð¶Ð¸Ð½

выпускная квалификационная работа бакалавра

ÐÐ°Ñ Ð¾Ð¶Ð´ÐµÐ½Ð¸Ðµ Ð¾Ð¿Ñ‚Ð¸Ð¼Ð°Ð»ÑŒÐ½Ñ‹Ñ Ð³Ð¸Ð¿ÐµÑ€Ð¿Ð°Ñ€Ð°Ð¼ÐµÑ‚Ñ€Ð¾Ð² для моделей машинного обучения Ð´Ð¾Ð±Ñ‹Ð²Ð°ÑŽÑ‰Ð¸Ñ ÑÐºÐ²Ð°Ð¶Ð¸Ð½

Abstract

Данная работа посвящена нахождению оптимальных гиперпараметров для моделей машинного обучения добывающих скважин. В рамках исследования рассматривались 4 метода оптимизации гиперпараметров моделей: Grid Search, Random Search, CmaEsSampler (CMA-ES) из библиотеки Optuna и Tree-structured Parzen Estimator (TPE) из библиотеки Hyperopt. Был проведен анализ данных с месторождений, и построены доверительные интервалы значений гиперпараметров для каждой из представленных моделей. Результаты представлены в виде графиков и таблиц, сравнивающих точность предсказанных значений целевой переменной и время, затраченное на работу каждого из методов. 

This work is devoted to finding optimal hyperparameters for machine learning models of producing wells. The study considered 4 methods for optimizing hyperparameters of models: Grid Search, Random Search, CmaEsSampler (CMA-ES) from the Optuna library and Tree-structured Parzen Estimator (TPE) from the Hyperopt library. The analysis of data from the deposits was carried out, and confidence intervals of hyperparameter values for each of the presented models were constructed. The results are presented in the form of graphs and tables comparing the accuracy of the predicted values of the target variable and the time spent on the operation of each of the methods.

Keywords

гиперпараметры, machine learning, доверительные интервалы, методы оптимизации, машинное обучение, optimization methods, hyperparameters, confidence intervals, Python

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Upload OA version
Are you the author? Do you have the OA version of this publication?