
Overdispersion is a common phenomenon in count datasets, that can greatly affect inferences about the model. In this paper develop three joint mean and dispersion regression models in order to fit overdispersed data. These models are based on reparameterizations of the beta-binomial and negative binomial distributions. Finally, we propose a Bayesian approach to estimate the parameters of the overdispersion regression models and use it to fit a school absenteeism dataset.
Distribución beta-binomial, Bayesian inference, distribución beta-binomial, Sobredispersión., Distribution, 31 Colecciones de estadística general / Statistics, Distribución binomial negativa, Negative Binomial, beta-binomial distribution, Overdispersion, distribution, Distribución gamma, Poisson Distribution, distribución binomial negativa, Bayesian Approach, gamma distribution, Enfoque bayesiano, Statistics, Bayesian approach, overdispersion, Exact distribution theory in statistics, distribución de Poisson, negative binomial, HA1-4737, sobredispersión, Beta-Binomial Distribution, 51 Matemáticas / Mathematics, Gamma Distribution, Characterization and structure theory of statistical distributions, distribución gamma, Poisson distribution, Distribución de Poisson, enfoque bayesiano
Distribución beta-binomial, Bayesian inference, distribución beta-binomial, Sobredispersión., Distribution, 31 Colecciones de estadística general / Statistics, Distribución binomial negativa, Negative Binomial, beta-binomial distribution, Overdispersion, distribution, Distribución gamma, Poisson Distribution, distribución binomial negativa, Bayesian Approach, gamma distribution, Enfoque bayesiano, Statistics, Bayesian approach, overdispersion, Exact distribution theory in statistics, distribución de Poisson, negative binomial, HA1-4737, sobredispersión, Beta-Binomial Distribution, 51 Matemáticas / Mathematics, Gamma Distribution, Characterization and structure theory of statistical distributions, distribución gamma, Poisson distribution, Distribución de Poisson, enfoque bayesiano
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 4 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
