Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Problems of mechanic...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Problems of mechanical engineering
Article . 2018 . Peer-reviewed
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Problems of mechanical engineering
Article
License: CC BY
Data sources: UnpayWall
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Prediction of Flow Accelerated Corrosion of NPP Pipeline Elements by Network Simulation Method

Authors: Irina Biblik; Konstantin Avramov; Roman Rusanov;

Prediction of Flow Accelerated Corrosion of NPP Pipeline Elements by Network Simulation Method

Abstract

Based on a comprehensive approach that uses the computer simulation of the process of destroying structural materials and technology of self-learning neural networks, a methodology has been developed for predicting the rate of flow accelerated corrosion (FAC) of pipeline elements with a single-phase medium of the second circuit of nuclear power plants (NPPs). The neural network model has been implemented in the Delphi Integrated Development Environment. The neural network consists of an input layer containing seven elements and an output layer with two elements. As the input variables of the neural network, the parameters that have the greatest influence on FAC process are chosen. These are the medium temperature, the pipeline internal diameter, the oxygen content in the medium, the coolant flow velocity, the hydrogen index, the time of monitoring (or the start of operation), and the time for which the prediction is performed. For each of the network input parameters, intervals of possible values were chosen. At that, the factors that affect FAC rate, but not included in the feasible model (chromium, copper and molybdenum content in the pipeline material, amine type) are assumed to be permanent. As the output parameters of the neural network, FAC rate and the variation of the pipeline element wall thickness within the predicted time interval have been selected. As the activation function of the neural network the sigmoid function is used. As a method of training the neural network, the error back propagation method has been chosen, which assumes both a forward and reverse passage through the network layers. As the learning algorithm of the neural network, the one with a teacher has been chosen. As a test sample for the neural network, it is proposed, along with operational control data, to use the results of calculations based on a statistical model created in the framework of a special calculation-experimental method. The application of the developed methodology makes it possible to improve the prediction accuracy of FAC rate without determining all the dependencies between the many factors that influence FAC process. The low errors of the constructed models make it possible to use the results of calculations both to determine the resource characteristics of NPP pipelines and optimize operational control.

Related Organizations
Keywords

neural networks; computer simulation; flow accelerated corrosion, UDC 621.039:004.94, нейронні мережі; комп'ютерне моделювання; ерозійно-корозійний знос, нейронные сети; компьютерное моделирование; эрозионно-коррозионный износ, УДК 621.039:004.94, Dynamics and Strength of Machines

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
1
Average
Average
Average
gold