Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Ornamental Horticult...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Ornamental Horticulture
Article . 2015 . Peer-reviewed
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Ornamental Horticulture
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Ornamental Horticulture
Article . 2015
Data sources: DOAJ
versions View all 2 versions
addClaim

Effects of plant conduction systems and organic fertilizer management on disease incidence and severity in ‘Osiana’ and ‘Carola’ roses

Authors: Márcia de Nazaré Oliveira Ribeiro; Elka Fabiana Aparecida Almeida; Marília Andrade Lessa; Pedro Martins Ribeiro Júnior; Sérgio Soares Barbosa; Júnia Rafael Mendonça Figueiredo; Simone Novaes Reis;

Effects of plant conduction systems and organic fertilizer management on disease incidence and severity in ‘Osiana’ and ‘Carola’ roses

Abstract

Conventional pruning is a very common practice for pruning rose cultivars in Brazil. However, few Brazilian producers known any other efficient plant training method for roses, namely “lateral stem bending” or “arching technique”, which involves bending the branches of the rosebush in order to increase the photosynthetic rate of the plant. As well as plant training, the use of fertilizers must also be done carefully in order to obtain high quality roses. Biofertilizers are recommended because of their multiple effects: fertilizer, protein synthesis stimulant, insect repellent, and disease controller. The aim of this study was to assess the plant training system and management of organic fertilizer on the incidence and severity of disease in the ‘Osiana’ and ‘Carola’ roses. The ‘Osiana’ rosebushes received three concentrations (0%, 5%, and 15%) of foliar biofertilizer applied monthly to the leaves together with two plant conduction methods (conventional pruning and lateral stem bending). ‘Carola’ roses were treated with three types of fertilizer (chemical fertilizer on the soil + bokashi on the soil, chemical fertilizer on the soil + foliar FishfertilÒand chemical fertilization on the soil without applying organic fertilizers) every two weeks, together with 2 plant conduction systems (conventional pruning and lateral stem bending). The additional treatments in ‘Carola’ roses were composed of two organic fertilizers (Bokashi and foliar Fishfertil®) and chemical fertilization with lateral pruning. The incidence and severity of disease in these plants during the experiment were assessed over 5 months. For the ‘Osiana’ rose, the incidence and severity of disease were not influenced by fertilizer management or plant training methods. For the ‘Carola’ roses, the different types of fertilizer caused different responses according to the plant training system used, with the biofertilizer Fishfertil® reducing the incidence of powdery mildew when applied to plants with laterally bent stems.

Keywords

biofertilizers, Floriculture, roses, downy mildew, powdery mildew., Plant culture, SB1-1110

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
1
Average
Average
Average
gold