
AbstractSeveral novel imaging and non-destructive testing technologies are based on reconstructing the spatially dependent coefficient in an elliptic partial differential equation from measurements of its solution(s). In practical applications, the unknown coefficient is often assumed to be piecewise constant on a given pixel partition (corresponding to the desired resolution), and only finitely many measurement can be made. This leads to the problem of inverting a finite-dimensional non-linear forward operator $\mathcal{F}:\ \mathcal{D}(\mathcal{F})\subseteq \mathbb{R}^{n}\to \mathbb{R}^{m}$ F : D ( F ) ⊆ R n → R m , where evaluating ℱ requires one or several PDE solutions.Numerical inversion methods require the implementation of this forward operator and its Jacobian. We show how to efficiently implement both using a standard FEM package and prove convergence of the FEM approximations against their true-solution counterparts. We present simple example codes for Comsol with the Matlab Livelink package, and numerically demonstrate the challenges that arise from non-uniqueness, non-linearity and instability issues. We also discuss monotonicity and convexity properties of the forward operator that arise for symmetric measurement settings.This text assumes the reader to have a basic knowledge on Finite Element Methods, including the variational formulation of elliptic PDEs, the Lax-Milgram-theorem, and the Céa-Lemma. Section 3 also assumes that the reader is familiar with the concept of Fréchet differentiability.
ddc:510, Mathematics - Analysis of PDEs, 518, FOS: Mathematics, 35R30, 65N21, Mathematics - Numerical Analysis, Numerical Analysis (math.NA), 510, Analysis of PDEs (math.AP)
ddc:510, Mathematics - Analysis of PDEs, 518, FOS: Mathematics, 35R30, 65N21, Mathematics - Numerical Analysis, Numerical Analysis (math.NA), 510, Analysis of PDEs (math.AP)
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 10 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
