Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ MEST Journalarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
MEST Journal
Article . 2021 . Peer-reviewed
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
MEST Journal
Article
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
MEST Journal
Article . 2021 . Peer-reviewed
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Hal
Article . 2021
Data sources: Hal
versions View all 4 versions
addClaim

RUBISCO PROTEIN PRODUCTION – LCA APPROACH

Authors: Skunca, Dubravka; Romdhana, Hedi; Brouwers, Rob;

RUBISCO PROTEIN PRODUCTION – LCA APPROACH

Abstract

The objective of this paper was to assess the environmental performance of the system of RuBisCo protein extraction and isolation from sugar beet leaves. Life cycle assessment (LCA) calculations have been completed to identify and quantify the environmental impacts from a cradle-to-cradle perspective covering seven subsystems: milling and extraction, heat treatment, centrifugation, microfiltration, ultrafiltration, chromatography and spray drying. In this paper, six environmental impact categories were analyzed: global warming potential, ozone layer depletion, energy demand, eutrophication potential, acidification potential, and land use. When RuBisCo protein extraction and isolation from different raw materials are compared, the only crop that has a lower environmental impact than sugar beet leaves is alfalfa, while the higher environmental impact has yellow mustard, ryegrass (mixture), Italian ryegrass, Brussels sprouts, English ryegrass, carrot leaves, leaf radish, and chicory. The comparison of environmental impact categories of different protein concentrates indicated that protein powder containing RuBisCo affected the environment less than egg protein concentrate. Direct comparison to other highly functional plant proteins was not possible as these are not in the market or have no LCA data available. RuBisCo was more environmentally impacting than regular soy protein. Our results for RuBisCo were in accordance with the low end of the range of results for microalgae, which is representing Chlorella HTF (heterotrophic fermenter), for most of the analyzed impact categories. This study found that the largest contributor to the environmental profile of the entire system of RuBisCo protein extraction and isolation from sugar beet leaves is the usage of electricity, while mitigation options for optimization of environmental impacts rely on the energy pinch approach for spray drying.

Keywords

[SPI] Engineering Sciences [physics], RuBisCo, environmental impact, life cycle assessment, GreenProtein

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    9
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
9
Top 10%
Average
Top 10%
gold