<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
doi: 10.1214/ejp.v14-613
We prove that the Ito map, that is the map that gives the solution of a differential equation controlled by a rough path of finite p-variation with p in [2,3) is locally Lipschitz continuous in all its arguments and could be extended to vector fields that have only a linear growth.
controlled differential equations, [MATH.MATH-PR] Mathematics [math]/Probability [math.PR], Rough paths, Itô map, [MATH.MATH-CA] Mathematics [math]/Classical Analysis and ODEs [math.CA]
controlled differential equations, [MATH.MATH-PR] Mathematics [math]/Probability [math.PR], Rough paths, Itô map, [MATH.MATH-CA] Mathematics [math]/Classical Analysis and ODEs [math.CA]
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 17 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |