<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Genetic engineering plays a key role in plant functional research and genetic improvement. A novel and powerful gene editing technique, CRISPR/Cas9, which was developed from a type II bacterial immune system, opened up a new era in precision genetic engineering in plants. This technique is based on a non-permanent transgene system and is starting to be adopted for precise gene editing in major cereal crops. It offers tremendous potential to accelerate crop improvement in a way that potentially reduces or eliminates the cumbersome and expensive regulatory processes associated with traditional transgenic crops. This chapter describes the advance of gene editing applied to sorghum, a drought tolerant C4 crop, and a successful strategy of CRISPR/Cas9 mediated gene family editing to improve sorghum digestibility and protein quality. It also discusses future prospects of CRISPR/Cas9 gene editing for sorghum genetic improvement.
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |