
AbstractIn this study, we investigate a new fourth-order integrable nonlinear equation. Firstly, by means of the efficient Hirota bilinear approach, we establish novel types of solutions which include breather, rogue, and three-wave solutions. Secondly, with the aid of Lie symmetry method, we report the invariance properties of the studied equation such as the group of transformations, commutator and adjoint representation tables. A differential substitution is found by nonlinear self-adjointness (NSA) and thereafter the associated conservation laws are established. We show some dynamical characteristics of the obtained solutions through via the 3-dimensional and contour graphs.
Fourth-order integrable nonlinear equation, Interaction solutions, Lump solutions, QA1-939, Invariant analysis, Mathematics, Conservation laws
Fourth-order integrable nonlinear equation, Interaction solutions, Lump solutions, QA1-939, Invariant analysis, Mathematics, Conservation laws
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 8 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
