<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Support vector machines are statistical- and machine-learning techniques with the primary goal of prediction. They can be applied to continuous, binary, and categorical outcomes analogous to Gaussian, logistic, and multinomial regression. We introduce a new command for this purpose, svmachines. This package is a thin wrapper for the widely deployed libsvm (Chang and Lin, 2011, ACM Transactions on Intelligent Systems and Technology 2(3): Article 27). We illustrate svmachines with two examples.
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 154 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 1% | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 1% | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |