
Cluster analysis is a frequently used technique in marketing as a method to develop partitions or classifications for market segmentation, product positioning, test market selection, etc. Because of the vast diversity in the assortment of clustering algorithms available, it is often times not obvious which algorithm or technique should be employed. It is often recommended that the marketer perform more than one cluster analysis on the same data set and compare representations as a reliability check. A methodology for evaluating the consistency of different clusterings is introduced via contingency table analysis by log-linear models. In addition, insight is provided as to selecting a “best” representative clustering by examining Stewart and Love's (1968) redundancy measures.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 1 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
