
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>doi: 10.1167/iovs.03-0570
pmid: 14691163
The accuracy of saccadic eye movements is maintained throughout life by adaptive mechanisms. With the double-step target paradigm, eight human subjects were investigated to determine whether saccadic adaptation depends only on the eye-displacement vector, or also on eye position as a context cue when two saccades of identical vector are adapted simultaneously.First, bidirectional adaptations (BDAs) of horizontal saccades of the same vector were induced in a single training phase. Each direction of adaptation in BDAs (backward and forward) was linked to one vertical eye position (e.g., forward adaptation performed with the eyes directed 12.5 degrees upward and backward adaptation with the eyes 25 degrees downward) and alternated from trial to trial. Second, unidirectional adaptations (UDAs) were tested in two control conditions in which training trials of a single direction (backward or forward) were presented at both 12.5 degrees and -25 degrees eye elevations.Opposite changes in saccade amplitude could develop simultaneously in BDA, indicating that saccadic adaptation depends on orbital eye position. Comparing these data with the control conditions further indicated that eye position specificity was complete for backward, but not for forward, adaptation.The results indicate that saccadic adaptation mechanisms use vectorial eye displacement signals, but can also take eye position signals into account as a contextual cue when the training involves conflicting saccade amplitude changes.
Adult, Male, 570, Adaptation, Ocular, [SCCO.NEUR]Cognitive science/Neuroscience, [SCCO.NEUR] Cognitive science/Neuroscience, 150, Saccades, Visual Perception, Humans, Female, Ocular Physiological Phenomena
Adult, Male, 570, Adaptation, Ocular, [SCCO.NEUR]Cognitive science/Neuroscience, [SCCO.NEUR] Cognitive science/Neuroscience, 150, Saccades, Visual Perception, Humans, Female, Ocular Physiological Phenomena
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 52 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
