
doi: 10.1162/coli_a_00164
Word Sense Disambiguation (WSD) systems automatically choose the intended meaning of a word in context. In this article we present a WSD algorithm based on random walks over large Lexical Knowledge Bases (LKB). We show that our algorithm performs better than other graph-based methods when run on a graph built from WordNet and eXtended WordNet. Our algorithm and LKB combination compares favorably to other knowledge-based approaches in the literature that use similar knowledge on a variety of English data sets and a data set on Spanish. We include a detailed analysis of the factors that affect the algorithm. The algorithm and the LKBs used are publicly available, and the results easily reproducible.
Computational linguistics. Natural language processing, P98-98.5
Computational linguistics. Natural language processing, P98-98.5
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 173 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 1% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 1% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 1% |
