<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
doi: 10.11568/kjm.2012.20.1.107 , 10.11568/kjm.2012.20.1.137 , 10.14403/jcms.2012.25.2.201 , 10.11568/kjm.2012.20.1.125 , 10.11568/kjm.2012.20.1.091 , 10.11568/kjm.2012.20.1.019 , 10.11568/kjm.2012.20.1.061 , 10.11568/kjm.2012.20.1.033 , 10.11568/kjm.2012.20.1.001 , 10.11568/kjm.2012.20.1.077 , 10.11568/kjm.2012.20.1.047 , 10.11568/kjm.2012.20.1
doi: 10.11568/kjm.2012.20.1.107 , 10.11568/kjm.2012.20.1.137 , 10.14403/jcms.2012.25.2.201 , 10.11568/kjm.2012.20.1.125 , 10.11568/kjm.2012.20.1.091 , 10.11568/kjm.2012.20.1.019 , 10.11568/kjm.2012.20.1.061 , 10.11568/kjm.2012.20.1.033 , 10.11568/kjm.2012.20.1.001 , 10.11568/kjm.2012.20.1.077 , 10.11568/kjm.2012.20.1.047 , 10.11568/kjm.2012.20.1
Using the direct method, we prove the Hyers-Ulam stability of the orthogonally additive-quartic functional equation $f (2x + y) + f (2x − y) = 4f (x + y) + 4f (x − y)+ 10f (x) + 14f (−x) − 3f (y) − 3f (−y)$ for all x, y with x ⊥ y, in non-Archimedean Banach spaces. Here ⊥ is the orthogonality in the sense of R atz.
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 7 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |