
doi: 10.1155/2021/9983771
Graphs are essential tools to illustrate relationships in given datasets visually. Therefore, generating graphs from another concept is very useful to understand it comprehensively. This paper will introduce a new yet simple method to obtain a graph from any finite affine plane. Some combinatorial properties of the graphs obtained from finite affine planes using this graph-generating algorithm will be examined. The relations between these combinatorial properties and the order of the affine plane will be investigated. Wiener and Zagreb indices, spectrums, and energies related to affine graphs are determined, and appropriate theorems will be given. Finally, a characterization theorem will be presented related to the degree sequences for the graphs obtained from affine planes.
Graphical indices (Wiener index, Zagreb index, Randić index, etc.), Distance in graphs, QA1-939, Mathematics
Graphical indices (Wiener index, Zagreb index, Randić index, etc.), Distance in graphs, QA1-939, Mathematics
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 1 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
