Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao https://doi.org/10.1...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
DBLP
Conference object
Data sources: DBLP
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Query Optimization Time

The New Bottleneck in Real-time Analytics
Authors: Rajkumar Sen; Jack Chen; Nika Jimsheleishvilli;

Query Optimization Time

Abstract

In the recent past, in-memory distributed database management systems have become increasingly popular to manage and query huge amounts of data. For an in-memory distributed database like MemSQL, it is imperative that the analytical queries run fast. A huge proportion of MemSQL's customer workloads have ad-hoc analytical queries that need to finish execution within a second or a few seconds. This leaves us with very little time to perform query optimization for complex queries involving several joins, aggregations, sub-queries etc. Even for queries that are not ad-hoc, a change in data statistics can trigger query re-optimization. Query Optimization, if not done intelligently, could very well be the bottleneck for such complex analytical queries that require real-time response. In this paper, we outline some of the early steps that we have taken to reduce the query optimization time without sacrificing plan quality. We optimized the Enumerator (the optimizer component that determines operator order), which takes up bulk of the optimization time. Generating bushy plans inside the Enumerator can be a bottleneck and so we used heuristics to generate bushy plans via query rewrite. We also implemented new distribution aware greedy heuristics to generate a good starting candidate plan that significantly prunes out states during search space analysis inside the Enumerator. We demonstrate the effectiveness of these techniques over several queries in TPC-H and TPC-DS benchmarks.

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    3
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
3
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!