
The scientific method of observation, measurement, and experiment may be our greatest achievement as a species. The technological innovation we enjoy today is the product of a culture of systematized scientific experimentation. But historically scientific experimentation has been expensive. Experiments consumed natural resources, took a long time to conduct, and required even more time and labor to analyze. In order to be productive, scientists have had to factor these costs into their work and to optimize accordingly. Web science is different. Not, as some have speciously argued, because big data has made the scientific method obsolete. The key difference is that web science has changed the economics of scientific experimentation. Thus, even as web scientists apply the traditional scientific method, they optimize based on very different economics. In this talk, I'll survey how web science has changed our approach to experimentation, for better and for worse. Specifically, I'll talk about differences in hypothesis generation, offline analysis, and online testing.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 1 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
