<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Rapid access to information is essential for a wide variety of retrieval systems and applications. Hashing has long been used when the fastest possible direct search is desired, but is generally not appropriate when sequential or range searches are also required. This paper describes a hashing method, developed for collections that are relatively static, that supports both direct and sequential access. Indeed, the algorithm described gives hash functions that are optimal in terms of time and hash table space utilization, and that preserve any a priori ordering desired. Furthermore, the resulting order preserving minimal perfect hash functions (OPMPHFs) can be found using space and time that is on average linear in the number of keys involved.
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 45 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 1% | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |