
The theory of twistors on foliated manifolds is developed. We construct the twistor space of the normal bundle of a foliation. It is demonstrated that the classical constructions of the twistor theory lead to foliated objects and permit to formulate and prove foliated versions of some well-known results on holomorphic mappings. Since any orbifold can be understood as the leaf space of a suitably defined Riemannian foliation we obtain orbifold versions of the classical results as a simple consequence of the results on foliated mappings.
Mathematics - Differential Geometry, Differential Geometry (math.DG), FOS: Mathematics, 53C12, 53C28
Mathematics - Differential Geometry, Differential Geometry (math.DG), FOS: Mathematics, 53C12, 53C28
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 1 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
