Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Halarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Hal
Part of book or chapter of book . 2007
Data sources: Hal
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Hal
Part of book or chapter of book . 2013
Data sources: Hal
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
HAL INRAE
Part of book or chapter of book . 2007
Data sources: HAL INRAE
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
HAL INRAE
Part of book or chapter of book . 2013
Data sources: HAL INRAE
https://doi.org/10.1128/978155...
Part of book or chapter of book . 2014 . Peer-reviewed
Data sources: Crossref
versions View all 5 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Fruits and Vegetables

Authors: Carlin, Frederic, F.;

Fruits and Vegetables

Abstract

This chapter focuses on the origin, description, and control of bacterial and fungal spoilage of fruits and vegetables. It talks about some chemical treatments like fungicides and decontamination for fruits and vegetables. Synthetic antimicrobial chemicals are still widely applied to fruits and vegetables after harvest, and decontamination aims at reducing the number of microbial contaminants on the surface of fruits and vegetables, thereby prolonging the time required to develop spoilage. Spoilage of fruits and vegetables is the result of complex interactions between a living plant organ and its microflora, and therefore deals with plant pathology and plant physiology as much as with food microbiology. Control of postharvest spoilage microorganisms largely accounts for these interactions, which could be additionally affected by the global climate change. Today, millions of tons of fruits and vegetables cross seas, oceans, and continents, from the Southern to the Northern hemisphere and from tropical to temperate zones. Developing countries increasingly play a role in this world market. Further development of minimally processed fruits and vegetables will bring new questions as to how to maintain the quality of processed produce, which requires prevention of spoilage, when the produce is often heavily stressed and naturally occurring defenses of the intact tissues have been overwhelmed. Consumer demand for high-quality fruits and vegetables produced under environmentally friendly conditions will probably not decrease. Finding solutions to historical problems associated with the preservation of fruits and vegetables against infection and spoilage by bacteria and fungi will be an ongoing future challenge.

Keywords

PHYSICAL TREATMENT, [SPI.GPROC] Engineering Sciences [physics]/Chemical and Process Engineering, [SDV]Life Sciences [q-bio], MICROORGANISM, ENZYMATIC ACTIVITIES, [SDV.IDA] Life Sciences [q-bio]/Food engineering, MODIFIED ATMOSPHERE, 333, [SDV] Life Sciences [q-bio], DECONTAMINATION, POSTHARVEST PHYSIOLOGY, FOOD QUALITY, [SDV.IDA]Life Sciences [q-bio]/Food engineering, BACTERIA, FOOD MICROBIOLOOGY, [SPI.GPROC]Engineering Sciences [physics]/Chemical and Process Engineering, CHEMICAL TREATMENT, PHYSIOLOGIE POST-RECOLTE, BIOLOGICAL CONTROL, RELATION HOTE-PARASITE

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
1
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!