Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao The University of Ma...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
https://doi.org/10.1115/imece2...
Article . 2004 . Peer-reviewed
Data sources: Crossref
versions View all 5 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

The Absorption of Sound in Cellular Foams

Authors: Dupère, Iain D J; Dowling, Ann P.; Lu, Tian J.;

The Absorption of Sound in Cellular Foams

Abstract

Porous materials are often used as sound absorbers in a variety of situations including architectural and industrial applications. In many cases it is advantageous for the material to be both lightweight and rigid. Metal foams, originally developed for use in catalytic converters in car exhaust systems, offer an attractive mix of properties being both lightweight and rigid. In addition they have good sound absorbing properties and are good heat conductors giving rise to the possibility of enhanced sound absorption through heat transfer. In this paper, we review the use and acoustic modelling of these materials. We compare the predictions made by a number of viscous models developed by the authors for the propagation of sound through open-cell metal foams with an experiment both for the metal foams and for the polymer substrates used to manufacture the foam. All models are valid in the limit of low Reynold’s number which is valid for the typical ligament dimensions found in metal foams provided the amplitude of the waves is below 160dB. The first model considers the drag experienced by acoustic waves as they propagate passed rigid cylinders parallel to their axes, the second considers propagation normal to their axes, and the third considers the propagation passed the spherical joints. All three are combined together to give a general model of the acoustic behaviour of the foams. In particular, the sound absorption is found to be significant and well predicted by the combined model. In addition we describe a post-processing technique for the experiment used to extract the fundamental wave propagation characteristics of the material.

Country
United Kingdom
Related Organizations
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    6
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
6
Average
Top 10%
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!