
The main purpose of this paper is to investigate the curvature behavior of four-dimensional shrinking gradient Ricci solitons. For such a soliton $M$ with bounded scalar curvature $S$, it is shown that the curvature operator $\text{Rm}$ of $M$ satisfies the estimate $|\text{Rm}|\leqslant cS$ for some constant $c$. Moreover, the curvature operator $\text{Rm}$ is asymptotically nonnegative at infinity and admits a lower bound $\text{Rm}\geqslant -c(\ln (r+1))^{-1/4}$, where $r$ is the distance function to a fixed point in $M$. As an application, we prove that if the scalar curvature converges to zero at infinity, then the soliton must be asymptotically conical. As a separate issue, a diameter upper bound for compact shrinking gradient Ricci solitons of arbitrary dimension is derived in terms of the injectivity radius.
Mathematics - Differential Geometry, Mathematics - Analysis of PDEs, Differential Geometry (math.DG), FOS: Mathematics, Analysis of PDEs (math.AP)
Mathematics - Differential Geometry, Mathematics - Analysis of PDEs, Differential Geometry (math.DG), FOS: Mathematics, Analysis of PDEs (math.AP)
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 49 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
