Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Malaysian Journal of...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Malaysian Journal of Fundamental and Applied Sciences
Article . 2014 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://doi.org/10.1063/1.2739...
Article . 2011 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

The quantum Hall effect: spin-charge locking

Authors: Hasan Abu Kassim; Ithnin Abdul Jalil; Norhasliza Yusof; Keshav N. Shrivastava; H. B. Senin; N. H. Idris;

The quantum Hall effect: spin-charge locking

Abstract

In two-dimensional electron gas when a large magnetic field is applied in one direction and an electric field perpendicular to it, there is a current in a direction perpendicular to both. This current is called the Hall effect. It remained without quantization until 1980 when it was found that the quantization leads to correct measurement of h/e2. Therefore the quantized Hall effect was further studied at high magnetic fields where fractional quantization was found. The fractional charge can arise from the “incompressibility” in the flux quantization. Laughlin wrote a wave function, the excitations of which are fractionally charged quasiparticles. This wave function comes in competition with charge density waves but for a few fractions it does give the ground state. If “incompressibility” is not considered and it is allowed to be compressible, the fractional charge can arise from the angular momentum which appears in the Bohr magneton in the form of g values. Usually the positive spin is considered but we consider both the positive as well as the negative values so that there is a spin-charge coupling. The values thus calculated for the fractional charge agree with the experimental data on the quantum Hall effect. We have followed this subject for a long time and hence have reviewed the subject. There are several interesting concepts which we learn from this subject. The concept of the Hall effect is quite clear particularly when combined with the flux quantization. We learn about the Landau levels and hence the boson character of electrons in two dimensions. We learn that charge becomes a vector quantity and there is spincharge coupling.

Keywords

QC Physics, 539

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
gold