<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
doi: 10.1111/nph.15794
pmid: 30883812
SummaryMicroplastic effects in terrestrial ecosystems have recently moved into focus, after about a decade of research being limited to aquatic systems. While effects on soil physical properties and soil biota are starting to become apparent, there is not much information on the consequences for plant performance. We here propose and discuss mechanistic pathways through which microplastics could impact plant growth, either positively or negatively. These effects will vary as a function of plant species, and plastic type, and thus are likely to translate to changes in plant community composition and perhaps primary production. Our mechanistic framework serves to guide ongoing and future research on this important topic.
Soil, Food Safety, Microbiota, Microplastics, Plants, Plant Roots, Ecosystem
Soil, Food Safety, Microbiota, Microplastics, Plants, Plant Roots, Ecosystem
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 646 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 0.1% | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 1% | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 0.1% |