
Motivated by analytical valuation of timer options (an important innovation in realized variance‐based derivatives), we explore their novel mathematical connection with stochastic volatility and Bessel processes (with constant drift). Under the Heston (1993) stochastic volatility model, we formulate the problem through a first‐passage time problem on realized variance, and generalize the standard risk‐neutral valuation theory for fixed maturity options to a case involving random maturity. By time change and the general theory of Markov diffusions, we characterize the joint distribution of the first‐passage time of the realized variance and the corresponding variance using Bessel processes with drift. Thus, explicit formulas for a useful joint density related to Bessel processes are derived via Laplace transform inversion. Based on these theoretical findings, we obtain a Black–Scholes–Merton‐type formula for pricing timer options, and thus extend the analytical tractability of the Heston model. Several issues regarding the numerical implementation are briefly discussed.
timer options, realized variance, Stochastic models in economics, Numerical methods (including Monte Carlo methods), Applications of stochastic analysis (to PDEs, etc.), volatility derivatives, Bessel processes, Derivative securities (option pricing, hedging, etc.), Diffusion processes, stochastic volatility models
timer options, realized variance, Stochastic models in economics, Numerical methods (including Monte Carlo methods), Applications of stochastic analysis (to PDEs, etc.), volatility derivatives, Bessel processes, Derivative securities (option pricing, hedging, etc.), Diffusion processes, stochastic volatility models
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 20 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
