Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Phycologyarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Phycology
Article . 2020 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Phycology
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PubMed Central
Other literature type . 2020
Data sources: PubMed Central
versions View all 3 versions
addClaim

Characterization of Chlorella vulgaris (Trebouxiophyceae) associated microbial communities1

Authors: Iris Haberkorn; Jean‐Claude Walser; Harald Helisch; Lukas Böcker; Stefan Belz; Markus Schuppler; Stefanos Fasoulas; +1 Authors

Characterization of Chlorella vulgaris (Trebouxiophyceae) associated microbial communities1

Abstract

Microalgae exhibit extensive potential for counteracting imminent challenges in the nutraceutical, pharmaceutical, and biomaterial sectors, but lack economic viability. Biotechnological systems for contamination control could advance the economic viability of microalgal feedstock, but the selection of suitable strains that sustainably promote microalgal productivity remains challenging. In this study, total diversity in phototrophic Chlorella vulgaris cultures was assessed by amplicon sequencing comparing cultures subjected to five different cultivation conditions. Overall, 12 eukaryotic and 53 prokaryotic taxa were identified; Alphaproteobacteria (36.7%) dominated the prokaryotic and C. vulgaris (97.2%) the eukaryotic community. Despite altering cultivation conditions, 2 eukaryotic and 40 prokaryotic taxa remained stably associated with C. vulgaris; diversity between systems did not significantly differ (P > 0.05). Among those, 20 cultivable taxa were isolated and identified by 16S rDNA sequencing. Subsequently, controlled co‐cultures were investigated showing stable associations of C. vulgaris with Sphingopyxis sp. and Pseudomonas sp.. Out‐competition of C. vulgaris due to ammonium or phosphate limitation was not observed, despite significantly elevated growth of Sphingopyxis sp. and Tistrella sp.. (P < 0.05). Nevertheless, C. vulgaris growth was impaired by Tistrella sp.. Hence, the study provides a selection of stable indigenous prokaryotes and eukaryotes for artificially tailoring microbial biocenoses. Following a bottom‐up approach, it provides a base for controlled co‐cultures and thus the establishment of even more complex biocenoses using interkingdom assemblages. Such assemblages can benefit from functional richness for improved nutrient utilization, as well as bacterial load control, which can enhance microalgal feedstock production through improved culture stability and productivity.

Keywords

Microbiota, Microalgae, Biomass, Chlorella vulgaris, Regular Articles, Biotechnology

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    18
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
18
Top 10%
Average
Top 10%
Green
hybrid