Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ TECNALIA Publication...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Expert Systems
Article . 2022 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

A novel approach for the detection of anomalous energy consumption patterns in industrial cyber‐physical systems

Authors: Izaskun Mendia; Sergio Gil‐Lopez; Iñaki Grau; Javier Del Ser;

A novel approach for the detection of anomalous energy consumption patterns in industrial cyber‐physical systems

Abstract

AbstractMost scenarios emerging from the Industry 4.0 paradigm rely on the concept of cyber‐physical production systems (CPPS), which allow them to synergistically connect physical to digital setups so as to integrate them over all stages of product development. Unfortunately, endowing CPPS with AI‐based functionalities poses its own challenges: although advances in the performance of AI models keep blossoming in the community, their penetration in real‐world industrial solutions has not so far developed at the same pace. Currently, 90% of AI‐based models never reach production due to a manifold of assorted reasons not only related to complexity and performance: decisions issued by AI‐based systems must be explained, understood and trusted by their end users. This study elaborates on a novel tool designed to characterize, in a non‐supervised, human‐understandable fashion, the nominal performance of a factory in terms of production and energy consumption. The traceability and analysis of energy consumption data traces and the monitoring of the factory's production permit to detect anomalies and inefficiencies in the working regime of the overall factory. By virtue of the transparency of the detection process, the proposed approach elicits understandable information about the root cause from the perspective of the production line, process and/or machine that generates the identified inefficiency. This methodology allows for the identification of the machines and/or processes that cause energy inefficiencies in the manufacturing system, and enables significant energy consumption savings by acting on these elements. We assess the performance of our designed method over a real‐world case study from the automotive sector, comparing it to an extensive benchmark comprising state‐of‐the‐art unsupervised and semi‐supervised anomaly detection algorithms, from classical algorithms to modern generative neural counterparts. The superior quantitative results attained by our proposal complements its better interpretability with respect to the rest of algorithms in the comparison, which emphasizes the utmost relevance of considering the available domain knowledge and the target audience when design AI‐based industrial solutions of practical value. Finally, the work described in this paper has been successfully deployed on a large scale in several industrial factories with significant international projection.

Keywords

Energy efficiency, Smart manufacturing, Anomaly detection, Industry 4.0, Industrial cyber-physical systems

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    14
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
14
Top 10%
Average
Top 10%
Green