Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Evolutionarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Evolution
Article
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Evolution
Article . 2014 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Evolution
Article . 2015
versions View all 5 versions
addClaim

GENETIC ARCHITECTURE OF INBREEDING DEPRESSION AND THE MAINTENANCE OF GAMETOPHYTIC SELF‐INCOMPATIBILITY

Authors: Gervais, Camille; Abu Awad, Diala; Roze, Denis; Castric, Vincent; Billiard, Sylvain;

GENETIC ARCHITECTURE OF INBREEDING DEPRESSION AND THE MAINTENANCE OF GAMETOPHYTIC SELF‐INCOMPATIBILITY

Abstract

Gametophytic self-incompatibility (GSI) is a widespread genetic system, which enables hermaphroditic plants to avoid self-fertilization and mating with close relatives. Inbreeding depression is thought to be the major force maintaining SI; however, inbreeding depression is a dynamical variable that depends in particular on the mating system. In this article we use multilocus, individual-based simulations to examine the coevolution of SI and inbreeding depression within finite populations. We focus on the conditions for the maintenance of SI when self-compatible (SC) mutants are introduced in the population by recurrent mutation, and compare simulation results with predictions from an analytical model treating inbreeding depression as a fixed parameter (thereby neglecting effects of purging within the SC subpopulation). In agreement with previous models, we observe that the maintenance of SI is associated with high inbreeding depression and is facilitated by high rates of self-pollination. Purging of deleterious mutations by SC mutants has little effect on the spread of those mutants as long as most deleterious alleles have weak fitness effects: in this case, the genetic architecture of inbreeding depression has little effect on the maintenance of SI. By contrast, purging may greatly enhance the spread of SC mutants when deleterious alleles have strong fitness effects.

Country
France
Keywords

Models, Genetic, Self-Incompatibility in Flowering Plants, self-incompatibility, Magnoliopsida, purging, [SDV.BID.EVO] Life Sciences [q-bio]/Biodiversity/Populations and Evolution [q-bio.PE], [SDV.GEN.GPO] Life Sciences [q-bio]/Genetics/Populations and Evolution [q-bio.PE], Inbreeding, Deleterious mutation, Germ Cells, Plant, inbreeding depression

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    30
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
30
Top 10%
Average
Top 10%
Green
bronze