Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Conservation Biologyarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Conservation Biology
Article . 2024 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PubMed Central
Other literature type . 2024
License: CC BY
Data sources: PubMed Central
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Incorporating citizen science into IUCN Red List assessments

Authors: Rachael Gallagher; Erin Roger; Jasmin Packer; Cameron Slatyer; Jodi Rowley; Will Cornwell; Emilie Ens; +4 Authors

Incorporating citizen science into IUCN Red List assessments

Abstract

Abstract Many citizen scientists are highly motivated to help address the current extinction crisis. Their work is making valuable contributions to protecting species by raising awareness, identifying species occurrences, assessing population trends, and informing direct management actions, such as captive breeding. However, clear guidance is lacking about how to use existing citizen science data sets and how to design effective citizen science programs that directly inform extinction risk assessments and resulting conservation actions based on the International Union for Conservation of Nature (IUCN) Red List criteria. This may be because of a mismatch between what citizen science can deliver to address extinction risk and the reality of what is needed to inform threatened species listing based on IUCN criteria. To overcome this problem, we examined each IUCN Red List criterion (A–E) relative to the five major types of citizen science outputs relevant to IUCN assessments (occurrence data, presence–absence observations, structured surveys, physical samples, and narratives) to recommend which outputs are most suited to use when applying the IUCN extinction risk assessment process. We explored real‐world examples of citizen science projects on amphibians and fungi that have delivered valuable data and knowledge for IUCN assessments. We found that although occurrence data are routinely used in the assessment process, simply adding more observations of occurrence from citizen science information may not be as valuable as inclusion of more nuanced data types, such as presence–absence data or information on threats from structured surveys. We then explored the characteristics of citizen science projects that have already delivered valuable data to support assessments. These projects were led by recognized experts who champion and validate citizen science data, thereby giving greater confidence in its accuracy. We urge increased recognition of the value of citizen science data within the assessment process.

Keywords

Amphibians, Conservation of Natural Resources, Citizen Science, Essay, Endangered Species, Animals, Extinction, Biological, Risk Assessment

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    8
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
8
Top 10%
Average
Top 10%
Green
hybrid