
SUMMARY We introduce an algorithm for producing simple approximate principal components directly from a variance–covariance matrix. At the heart of the algorithm is a series of ‘simplicity preserving’ linear transformations. Each transformation seeks a direction within a two-dimensional subspace that has maximum variance. However, the choice of directions is limited so that the direction can be represented by a vector of integers whenever the subspace can also be represented by vector if integers. The resulting approximate components can therefore always be represented by integers. Furthermore the elements of these integer vectors are often small, particularly for the first few components. We demonstrate the performance of this algorithm on two data sets and show that good approximations to the principal components that are also clearly simple and interpretable can result.
pairwise linear trnsformations, principal components analysis, simplification, Factor analysis and principal components; correspondence analysis, interpretation
pairwise linear trnsformations, principal components analysis, simplification, Factor analysis and principal components; correspondence analysis, interpretation
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 49 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
