
Millions of people around the world suffer from hearing disability. This large number demonstrates the importance of developing a sign language recognition system converting sign language to text for sign language to become clearer to understand without a translator. In this paper, a sign language recognition system using Backpropagation Neural Network Algorithm is proposed based on American Sign Language. The neural network of this system used extracted image features as input and it was trained using back-propagation algorithm to recognize which letter was the given letter with accuracy of respectively 70% and 85% with two proposed classifiers.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 13 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
