
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>Incremental (online) learning algorithms are methods for on-demand classification process from continuous streams of data. The main purpose is to deal with the classification task when original dataset is too large to process or when new instances of data arrive at any time. Moreover updating an existing model is (in many cases) much less expensive than to build a new one. This article presents a novel INEVOT algorithm for incremental decision tree induction from data streams. Because INEVOT is based on Evolutionary Algorithm it is possible to optimize different objectives at the same time. The experimental results indicate that proposed algorithm is powerful and promising. Provided solution can be easily adapted to nonstationary data streams.
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 2 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
