
handle: 20.500.11824/134
Evolutionary algorithm-based unmanned aerial vehicle (UAV) path planners have been extensively studied for their effectiveness and flexibility. However, they still suffer from a drawback that the high-quality waypoints in previous candidate paths can hardly be exploited for further evolution, since they regard all the waypoints of a path as an integrated individual. Due to this drawback, the previous planners usually fail when encountering lots of obstacles. In this paper, a new idea of separately evaluating and evolving waypoints is presented to solve this problem. Concretely, the original objective and constraint functions of UAVs path planning are decomposed into a set of new evaluation functions, with which waypoints on a path can be evaluated separately. The new evaluation functions allow waypoints on a path to be evolved separately and, thus, high-quality waypoints can be better exploited. On this basis, the waypoints are encoded in a rotated coordinate system with an external restriction and evolved with JADE, a state-of-the-art variant of the differential evolution algorithm. To test the capabilities of the new planner on planning obstacle-free paths, five scenarios with increasing numbers of obstacles are constructed. Three existing planners and four variants of the proposed planner are compared to assess the effectiveness and efficiency of the proposed planner. The results demonstrate the superiority of the proposed planner and the idea of separate evolution.
629, Unmanned aerial vehicles (UAVs), Evolutionary computation, path planning
629, Unmanned aerial vehicles (UAVs), Evolutionary computation, path planning
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 109 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 1% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 1% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
