Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao IEEE Transactions on...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
IEEE Transactions on Intelligent Transportation Systems
Article . 2020 . Peer-reviewed
License: IEEE Copyright
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Bioinspired Computational Intelligence and Transportation Systems: A Long Road Ahead

Authors: Javier Del Ser; Eneko Osaba; Javier J. Sanchez-Medina; Iztok Fister; Iztok Fister;

Bioinspired Computational Intelligence and Transportation Systems: A Long Road Ahead

Abstract

This paper capitalizes on the increasingly high relevance gained by data-intensive technologies in the development of intelligent transportation system, which calls for the progressive adoption of adaptive, self-learning methods for solving modeling, simulation, and optimization problems. In this regard, certain mechanisms and processes observed in nature, including the animal brain, have proved themselves to excel not only in terms of efficiently capturing time-evolving stimuli, but also at undertaking complex tasks by virtue of mechanisms that can be extrapolated to computer algorithms and methods. This paper comprehensively reviews the state-of-the-art around the application of bioinspired methods to the challenges arising in the broad field of intelligent transportation system (ITS). This systematic survey is complemented by an initiatory taxonomic introduction to bioinspired computational intelligence, along with the basics of its constituent techniques. A focus is placed on which research niches are still unexplored by the community in different ITS subareas. The open issues and research directions for the practical implementation of ITS endowed with bioinspired computational intelligence are also discussed in detail.

1,591

6,492

SCIE

495

466

30

Q1

Keywords

Autonomous and cooperative driving, Smart mobility, 332703 Sistemas de transito urbano, Bioinspired computational intelligence, Traffic forecasting, Route planning, Driver characterization

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    46
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
46
Top 10%
Top 10%
Top 1%
Upload OA version
Are you the author? Do you have the OA version of this publication?