Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Recolector de Cienci...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
IEEE Transactions on Evolutionary Computation
Article . 2016 . Peer-reviewed
License: IEEE Copyright
Data sources: Crossref
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

A Tunable Generator of Instances of Permutation-Based Combinatorial Optimization Problems

Authors: Hernando Rodríguez, Leticia; Mendiburu Alberro, Alexander; Lozano Alonso, José Antonio;

A Tunable Generator of Instances of Permutation-Based Combinatorial Optimization Problems

Abstract

[EN]In this paper, we propose a tunable generator of instances of permutation-based Combinatorial Optimization Problems. Our approach is based on a probabilistic model for permutations, called the Generalized Mallows model. The generator depends on a set of parameters that permits the control of the properties of the output instances. Specifically, in order to create an instance, we solve a linear programing problem in the parameters, where the restrictions allow the instance to have a fixed number of local optima and the linear function encompasses qualitative characteristics of the instance. We exemplify the use of the generator by giving three distinct linear functions that produce three landscapes with different qualitative properties. After that, our generator is tested in two different ways. Firstly, we test the flexibility of the model by producing instances similar to benchmark instances. Secondly, we account for the capacity of the generator to create different types of instances according to the difficulty for population-based algorithms. We study the influence of the input parameters in the behavior of these algorithms, giving an example of a property that can be used to analyze their performance.

This work has been partially supported by the Saiotek and Research Groups 2013-2018 (IT- 609-13) programs (Basque Government), TIN2013-41272P (Spanish Ministry of Science and Innovation), COMBIOMED network in computational biomedicine (Carlos III Health Institute), CRC-Biomarkers 6-12-TK-2011-014 (Diputación Foral de Bizkaia) and NICaiA PIRSES-GA-2009-247619 Project (European Commission). Leticia Hernando holds a grant from the Basque Government.

Keywords

permutation space, generalized Mallows model, combinatorial optimization problems, local optima, instance generator

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    21
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
21
Top 10%
Top 10%
Top 10%
Green